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Abstract
Multimodal Emotion Recognition in Conversation (MERC) utilizes multimodal informa-
tion such as language, visual, and audio to enhance the understanding of human emotions. 
Current multimodal interaction frameworks inadequately resolve inherent information 
conflicts and redundancy due to their assumption of equivalent quality across heteroge-
neous modalities. In addition, inappropriate evaluation of the importance of modalities 
can also cause this problem. To address this issue, we introduce a Language-Focused 
Augmented Transformer with Variational Distillation Fusion network called LFVD. In 
contrast to previous work, we suggest focusing on language modality through the Lan-
guage-Focused Augmented Transformer, which extracts task-relevant signals from visual 
and audio modalities to help us understand language. Concurrently, this architecture de-
rives conversational emotional atmosphere representation to refine multimodal integration, 
thereby mitigating the influence of redundant and conflicting information. Furthermore, 
Variational Distillation Fusion has been proposed in which multimodal representations 
are probabilistically encoded as variational distributions over Gaussian manifolds rather 
than deterministic embeddings. Subsequently, the importance of each modality is esti-
mated automatically based on distribution differences. Experiments on the IEMOCAP 
and MELD datasets show that our proposed model outperforms previous state-of-the-art 
baseline models.

Keywords  Emotion recognition in conversation · Distillation learning · Multimodal 
information fusion
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1  Introduction

Emotion Recognition in Conversation (ERC) aims to correctly recognize the emotions 
expressed by each speaker in a conversation. Recently, ERC has attracted a great deal of 
interest because of its valuable applications in recommendation systems (Zheng et al., 
2022), healthcare services (Pujol et al., 2019), and affective computing systems (Czerwin-
ski et al., 2016). Traditional ERC identifies the emotion of an utterance by analyzing the 
language in a conversation. However, language information alone cannot fully capture the 
emotional nuances. Emotions can be conveyed not only through words but also through the 
speaker’s facial expressions, and voice intonation. Therefore, MERC which integrates audio 
and video information in addition to unimodal ERC has attracted more research interest.

Since conversations contain rich multimodal contextual information, how to effectively 
utilize the information of each modality is an important issue. Recent approaches devoted 
to the modeling of multimodal information can be divided into two categories: graph-based 
methods (Hu et al., 2022; Tu et al., 2024b; Wu et al., 2025; Gan et al., 2025; Wang et al., 
2025; Ai et al., 2025) and transformer-based methods (Zhong et al., 2019; Zou et al., 2023; 
Liu et al., 2025). For graph-based approaches, they treat the utterances in the conversa-
tion as nodes and construct connecting edges from the relationships that exist between dif-
ferent utterances (whether it is the same speaker or the same emotion), and subsequently, 
the current node collects information about surrounding utterances. For transformer-based 
methods, they mainly utilize cross-modality transformers to capture intra- and inter-modal 
interactions. And they often use language modalities to augment other modalities. We argue 
that simply using the language modality to augment the other two modalities does not do a 
good job of improving the quality of these two modalities or even undermining the cues that 
are otherwise present in them that are favorable for emotion recognition.

Existing methods have shown their advantages in interacting and fusing multimodal 
information, but most of them treat different modalities as having the same quality, espe-
cially these graph-based methods, such as MMGCN (Hu et al., 2021) and GS-MCC (Ai 
et al., 2025). They form an undirected graph of all modalities, equally connecting each 
modality so as to equally fuse the information of each modality in subsequent operations 
such as convolution, and we consider such a connection as having the same quality for each 
modality. Such a symmetric fusion approach usually suffers from the influence of redundant 
and conflicting information. Whereas, the fact is that existing work and our ablation study 
(see Table 4) show that language, visual, and audio modalities contribute differently to the 
overall prediction performance (Pham et al., 2019; Lei et al., 2023). Therefore, we propose 
that the language modality serves as the dominant modality, which is of high quality and 
contains more information relevant to the MERC task, while the auxiliary modality, namely 
audio and visual, is of relatively low quality and inevitably contains information irrelevant 
to the task. In multimodal information fusion, we hope that the auxiliary modality can be 
leveraged to complement the dominant modality in the task and we want to avoid introduc-
ing information irrelevant to the MERC task into the final fusion representation.

To this end, we propose a novel Language-Focused AugmentedTransformer withVaria-
tional Distillation Fusion for solving the above problem, named LFVD. Our model con-
sists of three main components: Feature Representation, Language-Focused Augmented 
Transformer (LFA), and Cross-Modalityity Variational Distillation Fusion (CMVD). The 
Feature Representation is used to extract the representations of each modality. LFA differs 
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from previous symmetric multimodal information interaction strategies in that it focuses 
on language. Specifically, inspired by Wang et al. (2024) we design LFA as a scheme to 
further enhance the language modality, and follow the approach of transferring auxiliary 
information to the dominant modality in a targeted manner, interacting the information of 
each modality. Then, the emotional atmosphere representations of the conversations therein 
are extracted and dual contrast learning is used to enhance the features of each modality. 
In CMVD, we introduce variational distillation learning and cross-modality fusion. Spe-
cifically, the variational module obtains a more robust modal representation capability by 
transforming feature representations into distributional representations. The variational dis-
tillation module uses the dominant modality as a teacher and the two auxiliary modalities 
as students. Subsequently, when performing cross-modality fusion, evaluate the distribution 
differences to represent the importance of the information of each modality. In summary, the 
main contributions of this paper are as follows: 

1.	 We propose a novel LFA that enhances each modality by focusing on the language 
modality and extracting the conversational atmosphere representation, thereby reduc-
ing the influence of redundant and conflicting information during the multimodal inter-
action process.

2.	 We develop CMVD to learn a robust representation by encoding multimodal represen-
tations as variational distributions, which are subsequently used for distillation learning 
and cross-modality fusion, thereby improving the quality of multimodal representations.

3.	 Extensive experiments on two public benchmark multimodal datasets, including 
IEMOCAP and MELD, show that our proposed LFVD outperforms all state-of-the-art 
baseline models.

2  Related work

Previous work (Majumder et al., 2019; Ghosal et al., 2019) on ERC has focused on unimodal, 
i.e., language modality, and they have focused primarily on language modality for emotion 
recognition. DialogueRNN (Majumder et al., 2019) employs three GRUs, the global GRU, 
the party GRU, and the emotion GRU, to model speaker, contextual, and emotion informa-
tion. Based on DialogueRNN, DialogueGCN (Ghosal et al., 2019) also introduces Graph 
Convolutional Networks (GCN) to model intra- and inter-speaker dependencies with the 
advantage of graph structure to enhance the propagation of contextual information.

However, when dealing with more complex emotional scenarios, there are limitations 
of unimodal approaches compared to multimodal. Unimodality cannot provide enough 
information for emotion recognition, so recently there has been a keen interest in investi-
gating information such as facial expressions, audio information, to obtain more effective 
multimodal representations. How to capture the rich interaction information between each 
modality is crucial to improve the accuracy of emotion recognition. And due to the recent 
deepening of multimodal learning research (Ma et al., 2024; Song et al., 2024; Wang et al., 
2023), it provides us with more perspectives to think about. Ma et al. (2024) proposed a 
Transformer-based self-distillation model SDT for multimodal conversation sentiment rec-
ognition that effectively models interactions within and outside the modality and improves 
modal representation. Zou et al. (2022) proposed the Master Modal Transformer (MMTr) 
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method, which effectively improves the fusion effect of multimodal conversation emotion 
recognition by introducing the concept of master modality and enhancing the inter-modal 
interactions using multi-head attention. Tsai et al. (2019) introduced the multimodal trans-
former, which combines the basic modules of the transformer fusion method with a multi-
head attention mechanism to achieve Cross-Modality information fusion by using different 
modalities as query, value, and key. Li et al. (2023) proposes a multimodal emotion recog-
nition method that fuses global contextual features with unimodal features, and solves the 
problem of over-smoothing of existing graph neural networks by jointly optimizing modal 
fusion and graph comparison learning. Hu et al. (2021) proposed a multimodal fused graph 
convolutional network called MMGCN which uses three modalities to construct a multi-
modal graph. It establishes connections at the internal nodes of each modality and estab-
lishes connections between the modalities. Nguyen et al. first proposed the use of directed 
acyclic graphs (DAG) to integrate multimodal features and introduced course learning to 
deal with the sentiment category class imbalance problem. Nguyen et al. (2024a) proposed 
a unified framework using directed acyclic graphs (DAG) to integrate language, audio, and 
visual features, and introduced course learning to deal with emotional shifts and data imbal-
ance. Tu et al. (2024a) introduced a network called Multi-Knowledge Enhanced Interaction 
Graph Network (MKE-IGN), which facilitates the modeling of the relationship between 
utterances and different types of CSK by integrating a variety of knowledge such as lan-
guage and visual CSK into edge representations.

The main difference between our proposed approach and the above approaches is that 
existing work treats all modalities equally when performing multimodal information inter-
action, i.e., all modalities are assumed to have the same quality. However, it has been shown 
that the quality of the different modalities varies, so we believe that multimodal interactions 
should be performed in a non-reciprocal manner. Also previous approaches to non-recipro-
cal fusion have taken the approach of using the dominant modality to augment the weaker 
auxiliary modality, whereas our approach is just the opposite we further augment the domi-
nant modality by the auxiliary modality and extract the conversation atmosphere representa-
tion from it to augment the multimodal representation. Our hypothesis is that directly using 
a dominant modality (like language) to augment weaker ones can sometimes overwhelm or 
even corrupt their inherent, subtle emotional cues. Instead of this direct "strong-to-weak" 
augmentation, our "opposite" approach is more nuanced. We first use language as a lens to 
extract relevant signals from the other modalities. These signals are then integrated to form 
a unified, global conversational atmosphere representation. This global context is then used 
to augment all modalities, including language itself. This two-step process ensures that the 
augmentation is based on a holistic understanding of the conversation’s emotional tone, 
rather than just the raw semantic power of the text, leading to a more robust and conceptu-
ally sound fusion.

To this end, we propose a novel Language-Focused Augmented Transformer, which takes 
the language modality as the dominant modality and the other modalities as the auxiliary 
modalities, and further enhances the language modality with the help of the other modalities. 
Unlike the approach that inspired ours, Wang et al. (2024) merely use the cross-attention 
mechanism with language as the dominant to extract the enhanced multimodal representa-
tion of individual samples is a sample-level enhancement, whereas our approach utilizes the 
language modality to obtain the global atmosphere representation of the whole conversa-
tion, which is an enhancement at the conversation level. And in order to prevent the situation 
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where the discourse of the same conversation is augmented by the same global atmosphere 
representation resulting in the inability to distinguish similar emotions, we introduce a dual 
contrastive learning mechanism. Second, in fusing multimodal features unlike the existing 
work, we propose a Cross-Modality Variational Distillation Fusion method, which calcu-
lates the weights of each modality based on multimodal Gaussian distributions for fusion 
and improves the quality of the auxiliary modalities through distillation learning.

3  Methods

In this section, we provide a detailed description of each component of our model which 
consists of three main parts: Feature Representation, Language-Focused Augmented Trans-
former, and Cross-Modality Variational Distillation Fusion. The architecture of the pro-
posed model is illustrated in Fig. 1.

3.1  Task definition

Let U = {u1, u2, . . . , un} be a conversation produced by m ≥ 2 speakers, consisting of n 
utterances. Each utterance is represented by a triplet ui = {ua

i , uv
i , ul

i}, where ua
i , uv

i , and ul
i 

denote the audio, visual, and language features of ui, respectively. MERC aims to predict 
the emotion label yi of each utterance ui based on its previous utterances.

3.2  Feature representation

The Feature Representation module consists of two submodules, i.e., Utterance Feature 
Extraction and Utterance-Level Augmentation.

3.2.1  Utterance feature extraction

In this paper, we follow up-to-date previous works (Yang et al., 2025; Guo et al., 2024) 
and employ pre-trained models for feature extraction. We use RoBERTa (Liu et al., 2019), 
OpenSMILE (Eyben et al., 2010), and DenseNet (Iandola et al., 2014) to extract language, 
audio, and visual features respectively. Formally, we have:

	

Hl
i = RoBERTa(ul

i) ∈ Rdl ,

Ha
i = DenseNet(ua

i ) ∈ Rda ,

Hv
i = OpenSMlLE(uv

i ) ∈ Rdv ,

� (1)

where dl, da, and dv  represent the dimensions of the language, audio, and visual features, 
respectively.

3.2.2  Utterance-level augmentation

The features (denoted as Hξ ∈ Rn×dξ , where ξ ∈ {a, v, l}) extracted by the pre-trained 
encoder lack of contextual information in the conversation. To further capture and extract 
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the internal contextual information of each modality and project the features of all modali-
ties into the same semantic space. For this purpose, we use Bi-GRU (Cho et al., 2014) and 
DAG (Shen et al., 2021) to extract the contextual information in the conversation. Consid-
ering the inherently sequential nature of conversations, we take advantage of Bi-GRU to 
extract contextual information in the time dimension:

	 Ĥ
ξ = [Ĥξ

1, Ĥ
ξ

2, . . . , Ĥ
ξ

n] = Bi-GRU(Hξ
1, Hξ

2, . . . , Hξ
n) ∈ Rn×dr , � (2)

where dr is the output dimension of the Bi-GRU.
The following steps are proposed to refine the contextual information, as well as model 

speaker identity and location relationships. Following the previous work (Shen et al., 2021), 
we introduce the Directed Acyclic Graph Network (DAG-ERC), which uses a DAG to 
model the information flow in conversations. In each layer l of DAG-ERC, the hidden state 
of utterances is updated recurrently, capturing the temporal flow from the first to the last 
utterance:

	 Xξ = DAG(Ĥξ).� (3)

The results of the enhancement of each modality according to the above method are: Xa, 
Xv  and Xl ∈ Rn×dx .

3.3  Language-focused augmented transformer

To solve the problem of redundant and conflicting information introduced during multi-
modal information interaction. Our framework primarily focuses on the language modal-
ity, leveraging the other two modalities as auxiliary components to enrich language 
features. Then, these enriched language features are used to derive conversational atmo-
sphere representation, which subsequently optimizes the representations of each modal-
ity. This approach entails introducing global information for each utterance, thereby 
minimizing the possibility of redundant and conflicting information. To further enhance 
each modality, a contrast learning strategy is introduced. At the core of our architecture 
lies a hybrid attention mechanism. The mechanism combines dual self-attention lay-
ers with dual cross-modal attention layers, where the language modality consistently 
serves as the query. Building upon this foundation, we developed a novel Multi-head 
Language-guided Attention (MLA) mechanism that extends the conventional multi-head 
self-attention framework.

Specifically, given the input feature matrix Xξ , we first define a set of weight matrices 
WQξ , WKξ , WVξ  to obtain query, key and value as:

	 Qξ = XξWQξ
, Kξ = XξWT

Kξ
, Vξ = XξWVξ

.� (4)

Like the original transformer, we extend the language-guided attention to Multi-head Lan-
guage-guided Attention (MLA). This is denoted as:

1 3



Journal of Intelligent Information Systems

	

MLA(Q, K, V) = (head1 ∥ head2 ∥ · · · ∥ headh)Wo,

headi = attention (Qi, Ki, Vi), i ∈ {1, 2, · · · , h},

attention(Qi, Ki, Vi) = softmax

(
QiK

T
i√

dh

)
Vi,

� (5)

where (· ∥ ·) denotes vector concatenation operation, Wo ∈ Rh·dh×dx  represents the learn-
able parameter matrix, h denotes the number of headers used in the attention mechanism and 
dh represents the dimension of the head.

Firstly, MLA is used to extract complementary information about the language modality 
from other modal features:

	

X̃
a→l = MLA(Ql, Ka, Va),

X̄
a→l = LN(X̃a→l + Xa),

Xa→l = LN(FFN(X̄a→l) + X̄
a→l),

� (6)

where LN(·) and FFN(·) indicate , normalization and feedforward network, respectively. In 
the same way, we get Xv→l.

To obtain a more advanced representation of the language modality and contextual infor-
mation, we use MLA to further process the language modality:

	

X̃
l→l = MLA(Ql, Kl, Vl),

X̄
l→l = LN(X̃l→l + Xl),

X̂
l = LN(FFN(X̄l→l) + X̄

l→l),

� (7)

Subsequently, the obtained features Xa→l, Xv→l, and X̂l are aggregated together to obtain 
a high-level representation of the language modality. To preserve low-level language rep-
resentations, we employ the notion of residual connectivity, incorporating initial language 
features Xl. Finally, the resulting feature representation is denoted as Xm ∈ Rn×dx :

	 Xm = Xa→l + Xv→l + X̂
l + Xl.� (8)

The resulting Xm contains multimodal information about the conversation, and to enhance the 
representation of each modality, we extract the global information in Xm using the idea of add-
ing a learnable vector t. This vector t is concatenated to Xm = [t, xξ

1, . . . , xξ
n] ∈ R(n+1)×dx . 

The global dependencies are to be simulated through the mechanism of attention, thereby 
enabling t to express global information in conversation. Finally, the conversation’s emo-
tional atmosphere representation t is extracted from X̂m and augmented with a multimodal 
representation of each utterance in the conversation via a broadcast mechanism.

	

X̃
m = MLA(Qm, Km, Vm,

X̄
m = LN(X̃m + Xm),

X̂
m = [t, xξ

1, . . . , xξ
n] = LN(FFN(X̄m) + X̄

m),
Xξ = Xξ + t,

� (9)
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where ξ ∈ {a, v, l}, the enhanced multimodal representation Xa, Xv, Xl ∈ Rn×dx .
To foster multimodal feature alignment during training, we introduce Dual Contrastive 

Learning, which consists of two parts: 1) fully supervised contrastive learning based on the 
emotional label Lfull, and 2) self-supervised inter-modal contrastive learning based on the 
multimodal space semantics Lself.

For different modalities ξ and ξ′ of the same sample, we minimize the distance between 
utterances from different modalities within the same sample, while maximizing the distance 
between utterances from different samples:

	
Lself = − 1

N

ξ≠ξ′∑
ξ,ξ′∈{a,v,l}

N∑
i=1

log
exp(sim(xξ

i , xξ′

i )/τ)∑N
j=1 Ij ̸=i exp(sim(xξ

i , xξ′

j )/τ)
,� (10)

where sim(·, ·) denotes the dot product of L2-normalized feature vectors, τ  is the similarity 
scaling factor, and Ij ̸=i is an indicator function that equals 1 when j ̸= i, and 0 otherwise.

For each modality ξ, we minimize the distance between utterance features with the same 
label in the semantic space, while maximizing the distance between utterances with differ-
ent labels:

	
Lfull = − 1

N

∑
ξ∈{a,v,l}

N∑
i=1

1
|P(i)|

∑
p∈P(i)

log
exp(sim(xξ

i , xξ
p)/τ)∑N

k=1 Ik /∈⟩ exp(sim(xξ
i , xξ

k)/τ)
,� (11)

where P(i) denotes the set of utterances with the same label as the i-th utterance.

3.4  Cross-modality variational distillation fusion

The Cross-Modality Variational Distillation Fusion consists of two submodules, i.e., Varia-
tional Distillation Learning and Cross-Modality Fusion.

3.4.1  Variational distillation learning

We have proposed a distribution-based knowledge distillation method to improve the qual-
ity of the auxiliary modality and filter out information irrelevant to the task at the same time.

The unimodal features are fixed for each input sample, making it difficult to directly 
estimate their distributions. To address this, we adopt a generative approach to model the 
unimodal features, where the unimodal features are drawn from a latent space with isotropic 
Gaussian priors:

	 q(zξ
i |xξ

i ) = N (zξ
i | µ(xξ

i ), σ(xξ
i )). � (12)

In this way, the representation of each multimodal sample is not restricted to deterministic 
point embeddings but is a consistent fuzzy representation over multiple multivariate Gauss-
ian distributions. Subsequently, we align the audio and visual modalities with the language 
modality by minimizing the Kullback-Leibler (KL) divergence. In this process, the lan-
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guage modality acts as the teacher, and the other two modalities act as the students, thereby 
improving the representation of the auxiliary modality:

	

Ldistillation =
m∈M∑
m̸=l

DKL

(
q(zm

i |xm
i )∥q(zl

i|xl
i)

)

+
∑

m∈M

DKL (q(zm
i |xm

i )∥N (0, I)) ,

� (13)

where DKL(·||·) stands for the KL divergence, M ∈ {a, v, l}, the first part of the formula 
aims to align the distributions of the audio and visual modalities with the distribution of the 
language modality. The second part of the formula pushes each distribution towards a nor-
mal distribution, to introduce a strong prior constraint in the latent space, thereby ensuring 
the continuity and controllability of the distributions.

3.4.2  Cross-modality fusion

Evaluating the importance of different modalities during Cross-Modality Fusion can 
reduce the introduction of redundant and conflicting information, which is beneficial 
for improving multimodal representations. Furthermore, the distributional divergence 
between unimodal features is interpreted as the information gap between different 
modalities. Specifically, we do this by evaluating the KL divergence between uni-
modal distributions.

Thus, the weight of different modalities in data sample xi can be measured by the aver-
aged KL divergence between unimodal distributions as follows:

	 wl→v
i = DKL

(
q

(
zl

i || xl
i

)
|| q (zυ

i || xυ
i )

)
, � (14)

	 wv→l
i = DKL

(
q (zυ

i || xυ
i ) || q

(
zl

i || xl
i

))
, � (15)

	
wv

i = sigmoid
(

1
2

(
wl→v

i + wv→l
i

))
, � (16)

where the sigmoid function is used to scale the average KL divergence distance to the range 
of 0 to 1, for subsequent use. Likewise, we can compute wa

i . Then, we perform the weighted 
fusion using the obtained weights:

	 xf
i = wa

i xa
i + wv

i xv
i + xl

i,� (17)

where wa
i  and wv

i  represent the weights of the audio and visual modes, respectively. xf
i  

represents the final representation of the utterance xi, which is then passed into the classifier 
to obtain the predicted label.
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3.5  Emotion classifier

In the previous section, we obtained the final representation of the utterance ui denoted as 
xf

i . Then, we pass it through a fully connected network to predict the corresponding label:

	 ŷi = Classifier(xf
i ),� (18)

where Classifier(·) is composed of a fully connected layer followed by a function softmax(·). 
We utilize the cross-entropy loss for training the classifier. In particular, the cross-entropy 
loss between the predicted label distribution ŷi and the true label distribution yi is defined 
as follows: We use the cross-entropy loss function as:

	
Lcls = − 1

N

N∑
i=1

C∑
k=1

yi,k log ŷi,k,� (19)

where N  represents the number of utterances in the batch, and C denotes the number of 
emotion categories. The final loss function is defined as:

	 Lcl = γ1Lself + γ2Lfull, � (20)

	 L = Lcls + Lcl + γ3Ldistillation, � (21)

where γ1, γ2, and γ3 are hyperparameters.

4  Experiments

4.1  Datasets and evaluations

We use the MELD (Poria et al., 2019) and IEMOCAP (Busso et al., 2008) datasets to evalu-
ate our proposed model. Detailed information on these two datasets can be found in Table 1.

MELD  inspired by Friends, a multi-speaker conversation dataset was compiled, comprising 
1,433 dialogues and 13,708 utterances. Each utterance is classified into one of seven emo-
tional categories: Neutral, Surprise, Fear, Sadness, Joy, Disgust, Angry.

IEMOCAP  this dataset encompasses dyadic interactions involving ten speakers, consisting 
of 153 dialogues and 7,433 utterances. Each utterance is classified into one of six emotions: 
Happy, Sad, Neutral, Angry, Excited, Frustrated.

Table 1  Data distribution of IEMOCAP and MELD
Dataset Conversation Utterance Utterance per Conversation Classes

train valid test train valid test Utterance/Conversation
MELD 1039 114 280 9989 1109 2610 9 7
IEMOCAP 120 31 5810 1623 52 6
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Evaluation metrics  to balance the model’s overall performance and category-level fairness, 
we adopt overall accuracy and the weighted average F1-score as evaluation metrics. Addi-
tionally, to provide a detailed view of the model’s performance across individual categories, 
we also report the F1-score for each class.

4.2  Baselines

We used state-of-the-art models as the baseline for comparison.

DialogueRNN  (Majumder et al., 2019): introduce an RNN-based neural network architec-
ture that integrates each input utterance within the unique characteristics of the speaker, 
providing a more enriched context.

DialogueGCN  (Ghosal et al., 2019): introduce a GCN-based ERC approach that models 
conversational context for emotion recognition by leveraging self-dependency and inter-
speaker dependency.

MMGCN  (Hu et al., 2021): effectively leverages multimodal dependencies while incorporat-
ing speaker information to model inter-speaker relationships.

CTNet  (Lian et al., 2021): introduce a transformer-based structure to model intra- and 
Cross-Modality interactions, with word-level and segment-level features as input to capture 
temporal information in utterances.

MM-DFN  (Hu et al., 2022): introduce a graph-based dynamic fusion module that integrates 
multimodal contextual features to reduce redundancy and enhance each modality.

SCMM  (Yang et al., 2023): propose the Self-adaptive Context and Modal-interaction Mod-
eling (SCMM) framework. Contains context representation module which consists of three 
submodules to model multiple contextual representations, modal-interaction module for 
multimodal information interaction and self-adaptive path selection module integrating 
multimodal data.

CMCF-SRNet  (Zhang & Li, 2023): propose a Cross-Modality locality-constrained trans-
former to explore the multimodal interaction and investigate a graph-based semantic 
refinement transformer, which solves the limitation of insufficient semantic relationship 
information between utterances.

MultiDAG  (Nguyen et al., 2024b): introduce a multimodal ERC approach combining 
Directed Acyclic Graphs (DAG) for integrating language, audio, and visual features with 
Curriculum Learning (CL) to address emotional shifts and data imbalance, enhancing model 
performance.

AdaIGN  (Tu et al., 2024b): introduce an adaptive graph network that balances intra- and 
inter-speaker dependencies, employs the Gumbel Softmax trick to adaptively select nodes 
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and edges, and enhances multimodal ERC with adaptive selection policies and a task-spe-
cific loss.

4.3  Detailed settings

Our model is implemented using PyTorch on a single NVIDIA RTX 4090 GPU. We adopt 
the Adam optimizer, with the initial learning rate set to 6.2e-5 for IEMOCAP and 2.5e-4 
for MELD. Additionally, the L2 regularization factor is set to 7e-3, with a batch size of 
20 for IEMOCAP and 32 for MELD. The maximum number of training epochs is set to 
100 for IEMOCAP and 80 for MELD. For γ1, γ2, and γ3 are set 3.5e-2, 5e-3, and 3e-3 for 
IEMOCAP, 1.35e-3, 5e-3 and 3e-3 for MELD. To ensure fairness, all reported results are the 
average of five random runs in the test set.

4.4  Overall performances

We evaluated the overall performance of our model against the baseline method on the 
IEMOCAP and MELD datasets, as shown in Table 2 and Table 3, respectively. Our model 
consistently outperforms the state-of-the-art methods, showing superior accuracy (ACC) 
and weighted F1 (W-F1) scores on both datasets. On the IEMOCAP dataset, our model 
outperforms all baseline models in overall performance. Specifically, the overall accuracy 
improved by 2.49% and the weighted W-F1 score improved by 2.01% compared to the best 
baseline model (AdaIGN). In addition, our model achieved the highest performance in all 
four sentiment categories of Happy, Sad, Neutral, and Excited. Similarly, on the MELD 
dataset, our model outperformed all baseline models. Compared to the best baseline model 
(AdaIGN), the overall accuracy improved by 0.70% and the weighted W-F1 score improved 
by 0.24%. In addition, our model also achieved the best results in the Neutral, Fear, Sadness, 
Disgust, and Angry five emotion categories for this dataset. Although our model demon-
strates the best results in overall performance (ACC and W-F1), it does not achieve the best 
results across all emotion categories. For instance, in the IEMOCAP dataset, the best mod-
els for the Angry and Frustrated categories are MultiDAG and AdaIGN, respectively. Upon 

Table 2  Experimental results on IEMOCAP dataset
Model IEMOCAP

Happy Sad Neutral Angry Excited Frustrated ACC W-F1
DialogueRNN♯ 32.20 80.26 57.89 62.82 73.87 59.76 63.52 62.89

DialogueGCN♯ 51.57 80.48 57.69 53.95 72.81 57.33 63.22 62.89

MMGCN♯ 45.14 77.16 64.36 68.82 74.71 61.40 66.36 66.26

CTNet♭ 51.30 79.90 65.80 67.20 78.70 58.80 68.00 67.50

MM-DFN♭ 42.22 78.98 66.42 69.77 75.56 66.33 68.21 68.18

SCMM♭ 45.37 78.76 63.54 66.05 76.70 66.18 – 67.53

CMCF-SRNet♭ 52.20 80.90 68.80 70.30 76.70 61.60 70.50 69.60

MultiDAG♭ 49.65 81.40 69.53 70.33 71.61 66.94 69.11 69.08

AdaIGN♭ 53.04 81.47 71.26 65.87 76.34 67.79 70.49 70.74
ours 54.69 85.43 74.60 67.65 79.32 66.66 72.98 72.75
Best results in bold, second best underlined. ♯ and ♭ results come from Hu et al. (2022) and original papers, 
respectively
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careful analysis of these baseline models and our own model, we observed that MultiDAG 
and AdaIGN all construct multimodal interaction graphs to capture fine-grained information 
from each modality. These baseline models capture complex emotional cues in dialogues 
through the construction of sophisticated interaction graphs, enabling the effective recogni-
tion of different emotions based on the extracted cues. In contrast, our model focuses on 
enhancing and integrating information from different modalities with a language-centric 
approach, without the need to construct intricate interaction graphs to capture emotional 
cues. This is the reason why our model does not achieve optimal results across all emotion 
categories.

In summary, the LFVD proposed in this paper can effectively mitigate the occurrence 
of information conflict and redundancy when interacting with multimodal information, and 
also performs well when fusing multimodal information. This is further supported by the 
statistical analysis, where the p-value is ≪ 0.05 compared to the AdaIGN.

4.5  Ablation study

4.5.1  Effect of each modalities

Table 4 shows the performance of our model. We have drawn the following conclu-
sions: (1) Multimodal data input yields superior model performance compared to sin-
gle-modal approaches, with the language modality demonstrating significantly better 
results than the other two modalities. This provides strong evidence for us to use the 
language modality as the dominant modality. (2) By comparing L and L+V+A, it can 
be found that the model performance is better when adding the infor-mation of the 
other two modalities compared to using only the text mode. This is because by integrat-
ing information from multiple modalities, a more comprehensive and detailed repre-
sentation can be obtained, enabling the model to capture complex emotional cues in 
conversations.

Table 3  Experimental results on MELD dataset
Model MELD

Neutral Surprise Fear Sadness Joy Disgust Angry ACC W-F1
DialogueRNN♯ 76.97 47.69 – 20.41 50.92 – 45.52 60.31 57.66

DialogueGCN♯ 75.97 46.05 – 19.60 51.20 – 40.83 58.62 56.36

MMGCN♯ 76.33 48.15 – 26.74 53.02 – 46.09 60.42 58.31

CTNet♭ 77.40 52.70 10.00 32.50 56.00 11.20 44.60 62.00 60.50

MM-DFN♭ 77.76 50.69 – 22.93 54.78 – 47.82 62.49 59.46

SCMM♭ – – – – – – – – 59.44

CMCF-SRNet♭ – – – – – – – 62.80 62.30

MultiDAG♭ – – – – – – – 64.41 64.00

AdaIGN♭ 79.75 60.53 – 43.70 64.54 – 56.15 67.62 66.79
ours 80.02 58.61 19.63 43.73 64.45 27.71 58.24 68.32 67.03
Best results in bold, second best underlined. ♯ and ♭ results come from Hu et al. (2022) and original papers, 
respectively
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4.5.2  Effect of each components

To assess the contributions of each module in our model, we perform ablation experiments 
on two datasets. Furthermore, for the modules LFA and CMVD, we tested the effect of 
replacing the dominant modality with either the audio or visual modality.

	● w/o LFA-Transformer without the Language-Focused Augmented Transformer.
	● w/o CEAR without the conversational emotional atmosphere representation.
	● w/o DL without the Dual Contrstive Learning.
	● w/o CMVD without the Cross-Modality Variational Distillation Fusion.
	● w/o CMVD-Fusion without the Cross-Modality Fusion.
	● w/o CMVD-Distillation without the Variational Distillation.
	● w/ ours(A) replace the main modality in the model with the audio modality.
	● w/ ours(V) replace the main modality in the model with the visual modality.

The results of the ablation experiments are shown in the Table 5 (1) The removal of the 
Language Focused Augmentation Transformer module (LFA-Transformer) resulted in a 
degradation of the model’s performance due to the loss of the model’s ability to interact 
with multimedia messages, which was more pronounced for the IEMOCAP dataset than 
for MELD. This is because the average conversation length of the IEMOCAP dataset is 
significantly longer than that of the MELD dataset. As a result, the module is able to learn 
multimodal global information from longer conversations, thus effectively enhancing indi-
vidual utterances in the conversation. In addition, we tested the removal of the cross-modal 
variant distillation fusion module (CMVD) and found that the removal of this module also 

IEMOCAP MELD
ACC W-F1 ACC W-F1

w/o LFA-Transformer 67.34 67.52 67.55 66.22
w/o CEAR 68.76 68.94 68.28 66.64
w/o DL 72.70 71.91 68.05 66.87
w/o CMVD 71.29 70.79 67.78 66.42
w/o CMVD-Fusion 72.03 71.76 67.51 66.56
w/o CMVD-Distillation 71.60 71.04 67.74 66.79
w/ours(A) 70.73 70.32 68.20 66.76
w/ours(V) 70.61 69.91 67.70 66.37
ours 72.98 72.75 68.32 67.03

Table 5  Ablation experiments for 
exploring the importance of each 
components

 

IEMOCAP MELD
ACC W-F1 ACC W-F1

T 68.87 67.92 67.23 66.45
V 40.12 37.89 45.78 34.67
A 56.03 54.21 48.56 42.34
T+V 68.74 68.89 67.82 66.53
T+A 70.98 70.23 67.91 66.78
A+V 62.45 61.87 49.32 43.89
T+A+V 72.98 72.75 68.32 67.03

Table 4  Ablation experiments 
for exploring the effects of each 
modality as well as each combi-
nations of modalities
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affects the model performance. This suggests that the module’s approach of distilling and 
weighting the remaining two modalities with language as the teacher effectively improves 
the final fusion representation and improves model performance. This highlights the fact 
that learning by refining and weighting the fusion of multimodal information is crucial for 
multimodal tasks. Moreover, we report the performance loss of removing one of the sub-
modules, which shows that each module has its own contribution. (2) We find that using 
either the audio modality (w/ our(A)) or the visual modality (w/ our(V)) as the dominant 
modality leads to performance degradation compared to using the language modality. This 
phenomenon can be attributed to the higher quality of the language modality, which pro-
vides the best quality multimodal cues for fusion and extraction. These experiments fully 
validate the importance and justification of using language modality as the dominant modal-
ity in model construction.

4.5.3  Effect of different loss items

Table 6 shows the effect of each of the Loss Items proposed in this paper on the performance 
of the model. The performance of the two datasets shows a decreasing trend as the Loss 
Items are gradually removed, and the performance of the model is impaired regardless of 
the removal of that Loss Items, which illustrates the necessity of the individual Loss Items 
in the paper.

4.5.4  Effect of different fusion methods

To validate the efficacy of the Cross-Modality Variational Distillation Fusion (CMVD-
Fusion) approach introduced in our framework, we conducted a comprehensive comparison 
against five widely used multimodal fusion strategies: Add, Cat, and Gate.

As shown in Fig. 2, the performance of our proposed CMVD-Fusion method outper-
forms other fusion methods, demonstrating its effectiveness. The main reason lies in the 
fact that our method does not directly merge or concatenate the modality representations. 
Instead, it evaluates the distributional differences between modalities and applies a Gaussian 
distribution-based weighted fusion approach. This method alleviates the issue of modality 
heterogeneity, making it more effective than typical fusion strategies.Previous gate-based 
fusion methods only consider the direct relationships between different modalities. In con-
trast, our Gaussian distribution-based weighted fusion approach also takes into account the 
uncertainties between modalities, thereby achieving a better fusion of the diverse modality 
representations.

IEMOCAP MELD
ACC W-F1 ACC W-F1

w/o Lself 72.77 72.14 68.05 66.93
w/o Lfull 72.09 71.45 67.70 66.74
w/o Ldistillation 71.60 71.04 67.74 66.79
w/o Lall 70.73 70.77 68.39 66.50
ours 72.98 72.75 68.32 67.03

Table 6  Ablation study on differ-
ent loss items
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4.6  Analysis of conversation length

We report the performance of the model (WF-1) for different conversation lengths, as shown 
in Fig. 3. Based on the conversation length distribution characteristics of the IEMOCAP 
and MELD datasets, we adopt differentiated classification criteria for multi-scale analysis. 
Specifically, for the IEMOCAP dataset, short conversations are defined as length ≤ 43 (cor-
responding to the first quartile Q1 = 43), medium conversations as 43 < length ≤ 59 (cor-
responding to the third quartile Q3 = 59), and long conversations as length > 59; whereas, 
for the MELD dataset, due to presenting significant short conversation characteristics, the 
classification thresholds are set as ≤ 5 (Q1 = 5), 5 < length ≤ 13 (Q3 = 13), and > 13.

The results show that our approach consistently outperforms MGLRA (Meng et al., 
2024) on both datasets across all lengths of conversations.Furthermore, the performance of 
the model progressively decreases as the length of the conversation increases, a phenom-
enon that can be attributed to the fact that long conversations are usually accompanied by 
enhanced cross-cutting semantic dependencies, resulting in key emotion cues propagating 
in the temporal sequence information decay during the process, a phenomenon that is par-
ticularly significant in the Transformer architecture.

Fig. 3  Comparison of the performance of MGLRA and LFVD under different conversation lengths

 

Fig. 2  Performance of different fusion methods on two datasets: the left panel shows the WF-1 score, and 
the right panel displays the Accuracy score
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4.7  Error analysis

In Fig. 4, we visualize the model’s prediction results through a confusion matrix. From 
the figure, we observe that in the IEMOCAP dataset, the model often misclassifies ’happy’ 
samples as ’excited’ or ’neutral’. A similar trend is seen with ’excited’ samples. This is 
largely due to the similarity between ’excited’ and ’happy’, as well as the fact that ’neutral’ 
samples constitute a significant portion of the dataset, causing the model to focus more on 
them. In the MELD dataset, ’neutral’ is the dominant class, accounting for as much as 48%. 
As a result, the model tends to focus on classifying ’neutral’ samples during training, which 
leads to the underperformance in classifying other emotions. Particularly, the ’fear’ and ’dis-
gust’ categories, which are less represented in the dataset, are often misclassified as ’neu-
tral’. Moreover, misclassifications between similar emotional categories, such as’surprise’ 
and ’joy’, are also observed in this dataset. Although the model somewhat alleviates these 
issues, further improvements in recognizing similar emotions and addressing the under-
representation of certain emotion categories could significantly enhance its performance.

5  Conclusion

We propose the LFVD, designed to effectively reduce the redundant and conflicting infor-
mation that arises during multimodal information interaction. Specifically, we introduce a 
novel Language-Focused Augmented Transformer, which enhances multimodal informa-
tion in a manner driven by the language modality. Additionally, we present Cross-Modality 
Variational Distillation Fusion, which aims to generate a robust modal representation by 
encoding multimodal representations as variational distributions. We conduct compara-
tive experiments on two widely used datasets. The experimental results demonstrate that 
our method outperforms state-of-the-art techniques on both datasets, thereby verifying the 
effectiveness of our model and the hypothesis that focusing on the language modality can 
achieve effective multimodal interaction. As future work, to futher enhance the performance 
of our approach on all tasks, especially the two tasks with lower metrics, we will propose to 
develop novel contrastive learning strategy specialized for similar emotions.

Fig. 4  Confusion matrix for IEMOCAP(left) and MELD(right)
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